Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization
نویسندگان
چکیده
An l(p) (0 < p ≤ 1) sparsity regularization is applied to time-domain diffuse optical tomography with a gradient-based nonlinear optimization scheme to improve the spatial resolution and the robustness to noise. The expression of the l(p) sparsity regularization is reformulated as a differentiable function of a parameter to avoid the difficulty in calculating its gradient in the optimization process. The regularization parameter is selected by the L-curve method. Numerical experiments show that the l(p) sparsity regularization improves the spatial resolution and recovers the difference in the absorption coefficients between two targets, although a target with a small absorption coefficient may disappear due to the strong effect of the l(p) sparsity regularization when the value of p is too small. The l(p) sparsity regularization with small p values strongly localizes the target, and the reconstructed region of the target becomes smaller as the value of p decreases. A phantom experiment validates the numerical simulations.
منابع مشابه
Image quality improvement of diffuse optical tomography of breast tumor using artificial intelligence
This article has no abstract.
متن کاملAn Efficient Method for Model Reduction in Diffuse Optical Tomography
We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...
متن کاملImage Reconstruction for Diffuse Optical Tomography Based on Radiative Transfer Equation
Diffuse optical tomography is a novel molecular imaging technology for small animal studies. Most known reconstruction methods use the diffusion equation (DA) as forward model, although the validation of DA breaks down in certain situations. In this work, we use the radiative transfer equation as forward model which provides an accurate description of the light propagation within biological med...
متن کاملDimensionality Reduction Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography.
Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-q...
متن کاملImage reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm.
We present an image reconstruction method for diffuse optical tomography (DOT) by using the sparsity regularization and expectation-maximization (EM) algorithm. Typical image reconstruction approaches in DOT employ Tikhonov-type regularization, which imposes restrictions on the L(2) norm of the optical properties (absorption/scattering coefficients). It tends to cause a blurring effect in the r...
متن کامل